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Abstract-The one-dimensional problem of distribution of thermal stresses and temperature is
considered in a generalized thermoelastic electrically conducting half-space permeated by a primary
uniform magnetic field when the bounding plane is suddenly heated to a constant temperature.

The Laplace transform technique is used to solve the problem. Inverse transforms are obtained
in an approximate manner using asymptotic expansions valid for small values of time.

Numerical computations for two particular cases are carried out. Copyright © 1996 Elsevier
Science Ltd

NOMENCLATURE

T absolute temperature
(JI) components of stress tensor
eij components of strain tensor
u, components of displacement vector
H magnetic intensity vector = (0, H o, 0)
E electric intensity vector
p density
k thermal conductivity
(J 0 electric conductivity
110 magnetic permeability
J., 11 Lame's constants
a, coefficient of linear thermal expansion
CE specific heat for processes with invariant strain tensor
'10 = pCE/k
c1 = [(J. +211) /pp/2 speed of propagation of longitudinal isothermal waves
y = (3.'.+211) a,
To reference temperature chosen such that I(T - To)/Tol « I
f3 = [(A+21l)/IlPI2
b = yTo/1l
g = y/pCE

INTRODUCTION

Biot (1956) formulated the theory of coupled thermoelasticity to eliminate the paradox
inherent in the classical uncoupled theory that elastic changes have no effect on the tem­
perature. The heat equations for both theories are of the diffusion type predicting infinite
speeds ofpropagation for heat waves contrary to physical observations. Lord and Shulmann
(1967) introduced the theory of generalized thermoelasticity with one relaxation time by
postulating a new law of heat conduction to replace the classical Fourier's law. This law
contains the heat flux vector as well as its time derivative. It contains also a new constant
that acts as a relaxation time. The heat equation of this theory is of the wave-type, ensuring
finite speeds of propagation for heat and elastic waves. The remaining governing equations
for this theory, namely, the equations of motion and the constitutive relations remain the
same as those for the coupled and the uncoupled theories. This theory was extended by
Dhaliwal and Sherief (1980) to general anisotropic media in the presence of heat sources.

An increasing attention is being devoted to the interaction between magnetic fields
and strain in a thermoelastic solid due to its many applications in the fields of geophysics,
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plasma physics and related topics. Usually, in these investigations the heat equation under
consideration is taken as the uncoupled or the coupled equation not the generalized one.
This attitude is justified in many situations since the solutions obtained using any of these
equations differ little quantitively. However, when short time effects are considered, the full
generalized system of equations has to be used or a great deal of accuracy is lost.

A comprehensive review of the earlier contributions to the subject can be found in
Paria (1967). Among the authors who considered the generalized magneto-thermoelastic
equations are Nayfeh and Nasser (1972) who studied the propagation of plane waves in a
solid under the influence of an electromagnetic field. They have obtained the governing
equations in the general case and the solution for some particular cases. Choudhuri (1984)
extended these results to rotating media.

FORMULATION OF THE PROBLEM

We shall consider a homogeneous, isotropic, thermoelastic solid of finite conductivity
(J0 occupying the region x ~ 0, where the x-axis is taken perpendicular to the bounding
plane of the half-space pointing inwards. A constant magnetic field with components (0,
HO' 0) is permeating the medium in the absence of an external electric field.

It is assumed that the state of the medium depends only on x and t and that the
displacement vector has components (u(x, t), 0, 0). Since no external electric field is applied,
and the effect of polarization of the ionized medium can be neglected, it follows that the
total electric field E vanishes identically inside the medium. It can be easily seen from the
governing equations in Nayfeh and Nasser (1982) that when the electric field vanishes then
the coefficient connecting the temperature gradient and the electric current as well as the
coefficient connecting the current density with the heat flow density can be ignored.

The equations of motion in the absence of body forces have the form (see e.g. Nayfeh
and Nasser (1982))

(1)

where t denotes the time variable, B is the magnetic induction vector given by

and j is the conduction current density, given by Ohm's law

The constitutive equations are given by

(2)

where eij are given by

The energy equation in the absence of heat sources can be written as
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(3)

where "0 is the relaxation time. In the above equations a comma denotes material derivatives
and the summation convention is used.

The components of the electromagnetic induction vector are given by

while the components of F = j x B appearing in eqn (I) are given by

Using the above values, eqns (1)-(3) reduce to

(4)

(5)

(6)

The governing equations can be put into a more convenient form by using the following
non-dimensional variables

In terms of these variables, eqns (4)-(6) become (dropping the primes for convenience)

cPu a2u a8 au
----a--M-
at2 - ax2 ax at'

a = f32 au -be
ax '

where a = bjf32.
The boundary conditions are assumed to be

a(x, t)lx~o = 0, a(x, t)IX~08 = 0,

8(x, t)lx~o = 80 1/(t), 8(x, t)IX~08 = 0,

(7)

(8)

(9)

(10)

(II)

where 1/(t) denotes the Heaviside unit step function. These boundary conditions mean that
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the bounding plane of the half-space is taken as traction free and is subjected to a constant
thermal shock at time t = O.

The initial conditions are taken as

ou(x, t)1
u(x, t)I,~o = -;:l- = 0,

ut ,~o

oe(x, t)1
e(x, t)I,~o = -",- = O.

ut ,~o

SOLUTION IN THE LAPLACE TRANSFORM DOMAIN

We now introduce the Laplace transform defined by the formula

J(p) = IX) e-P'f(t) dt.

(12)

(13)

(14)

Applying this transform to eqns (7)-(9), and using the initial conditions (12) and (13), we
obtain

2 0U -
{j = f3 --be

OX '

Introducing the thermoelastic potential function ¢ defined by the relation

o¢
u=­

ox'

eqns (15)-(17) reduce to

(
0

2 2)--ox2 -Mp-p ¢ = ae,

The boundary conditions (10) and (11) expressed in terms of;P take the form

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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q;(x,p)lx~o = 0, q;(x,p)lx~d) = 0,
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(22)

8
2
q;(x,p) 1

8x2
X~O p

8
2
q;(x,p) I = o.
8x2

x~oo
(23)

Eliminating 8 between eqns (19) and (21), we obtain the following equation satisfied
by q;

(24)

where 8 is a positive constant defined by 8 = ago
The general solution of eqn (24) for x ~ 0 is

(25)

where A] and A 2 are parameters depending on p to be determined from the boundary
conditions and k 1 and k2 are the roots with positive real parts of the characteristic equation

(26)

k] and k 2 are given by

k1,2 = {~[(M+P)+(l+8)(l+'ioP)

± ((M + p)2 + 2(8-l)(M+ p)(l +'iop) + (l +8)2(1 + 'iop)2) 1/2] f2. (27)

From the boundary conditions (22) and (23), it follows that

A - - A a()-,-o_
] - 2 - p(ki-kD'

hence

(28)

(29)

(30)

INVERSION OF THE LAPLACE TRANSFORMS

Let us now determine inverse transforms for the case of small values of time (large
values ofp). Denoting u = p-l, we have

(32)

where
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il,2(U) = HI +Mu+(1 +e)(U+To )

±[(1 + MU)2 + 2(6 -1)(1 + MU)(U+To ) + (l +6)2(U+To)2] ]/2}.

Expanding il (u) and i2(U) in a Maclaurin series of which the first four terms are
retained, we get

where

and

3

j;(u) = L aiju) , i = 1,2,
)~O

a lO =Hl+(6+1)To +A],

all =HM+6+1+B/A],

A 2 C-B 2

al2 =
4A 3

B(B 2 -A2 C)
al3 =

4A 5

a20 =Hl+(6+l)To-A],

a2l =HM+6+1-B/A],

A = [1+2(e-l)To+(6+1)2T~]l/2,

B = M + (6-1)(1 +MTo ) + (6+ 1)2 To ,

C= (6+M)2_2(M-6)+1.

(33)

Next, we expand the expressions [j;(U)f/2 in a Maclaurin series and, retaining the first
three terms, we obtain the expressions for k; in the form

where

2

k -l"b)
i = U L..J ijU,

)=0

ail
bjJ = ~'

2y a;0

i = 1,2, (34)

1 2
b 2 = --(4a2a·0 -a'I)'

I 8 3/2 I I I

aio

Using similar expansion methods, we obtain

1 2 ~ .
--= U L... buJ

kr-k~ )~O J '

where

(35)
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1
bo = A'

STRESS DISTRIBUTION

Let us substitute the expressions (34) and (35) into eqn (31) to obtain

where
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(36)

In order to invert the Laplace transforms in eqn (36), we shall use the convolution
theorem of the Laplace transform (see e.g. Oberhettinger and Badii (1973)), namely

and the following formulae from Oberhettinger and Badii (1973)

tV
Sf-I (p-v-l) = r(v+ 1)' Re v> -1,

Sf- l (p-v-l e-h/P) = (~r2Jv(2jh!), Rev> -1, h>O,

Sf-I (e- hp ) = C5(t-h),

Sf-I (rV-leh/p) = (~r2 Iv (2jh!) , Re v> -1, h > 0,

where Jvand Iv are the Bessel and the modified Bessel functions of order v of the first kind,
respectively.

The sign of the quantities bl2 and bn plays an important role in the inversion process.
In Sherief and Dhaliwal (1981), it was found that for the same problem in the absence of
the applied magnetic field, we always have bl2 > °and bn < O. In the presence of the
magnetic field, however, it was found that there is a certain value M = M* depending on
the properties of the medium such that

bl2 > ° for M < M*,

b12 =0 for M=M*,

and b12 <O for M>M*.
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The value of b22 is always negative as in Sherief and Dhaliwal (1981).
Using the above formulae, we have

( t yzblzx li2Jb 12 xt) for M<M*,

2- 1 (p- j- Ie- b12x/p ) =
(t-blOx)j

for M=M*,.,
J.

( -t )j/Z
b

12
x Ii2J -b12 xt) for M>M*,

Using these expressions together with the convolution theorem in which we take

ll(p)=exp(-bioxp) and lz(p)=p-v-Iexp(-bizx/p),

we obtain for M < M*

For M > M*, we have

while for M = M*, we get

where

Xi = t-biOx,

t-biOx
Yi = Ib

i2
lx '

Zi = 2JxlbiZ I(t-biO x).

(39)

From eqns (37)-(39), it follows that (T(x, t) is a continuous function for 0 < X < 00

except for the points x = t/b lo and x = t/bzo where jumps of the magnitudes
-beomoexp( -bllt/blo) and beomoexp( -bzl t/b zo ), respectively, occur.
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TEMPERATURE DISTRIBUTION

Substituting from (32)-(35) into eqn (30), we obtain

where

C iO = bO(aiO -1),

j

cij = L: aikbj_k-bj-Mbj_l, j = 1,2,3.
k~O
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(40)

Using inversion techniques similar to these in the previous section, we obtain for
M<M*

For M > M*, we get

Finally, for M = M*, we have

(43)

From eqns (41)-(43), it follows that the function () has two discontinuities at the points
x = t/b 10 and x = t/b20 . The jumps at these points have magnitudes ()oexp( -b11t/b10)C10
and - ()o exp( - b21 t/b20)C20, respectively.

NUMERICAL RESULTS

The copper material was chosen for purposes of numerical evaluations. The stress and
temperature are evaluated for t = 0.2. The stress distribution is shown in Fig. 1 while the
temperature distribution is shown in Fig. 2. The material constants are taken as

o 0 0.2 0.4 0.6 0.8 1.0. f.::;:==.~..~"'--'--"::":""':.L-,--,-::":",:~""""",~::"""",-,--",,:,,,:,-=--x
-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

M = 0
M = 0.2
M = M* = 0.3696
M = 1

Fig. 1. Stress distribution for t = 0.2.
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M = 0
M = 0.2
M = M" = 0.3696
M = 1
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1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6 0.8 1.0 x

Fig. 2. Temperature distribution for t = 0.2.

e = 0.0168, {P = 3.5 and!o = 0.05.

The value of M* (the solution of the equation biz = 0) was found, using numerical
interpolation techniques, to be 0.3696, approximately. The computations were carried out
for four values of M. The first value M = 0 gives the solution of the problem in the absence
of the applied magnetic field as given in Sherief and Dhaliwal (1981). The second value of
M is taken as M = 0.2 which is less than M*. This is the solution for weak magnetic fields
as given by eqns (37) and (41) for the stress and temperature distributions, respectively.
The third value chosen for Mis M = M* for which the stress and temperature are calculated
from eqns (39) and (43), respectively. The fourth and final value taken for Mis M = 1 > M*
for which the functions are calculated from eqns (38) and (42).

It is seen from Figs 1 and 2 that the magnetic field acts to decrease the temperature as
well as the magnitude of the stress.

The stress and the temperature distributions each has two discontinuties at the locations
x = tlb lo and tlbzo . Since b lo and bzo are both independent of M the discontinuities occur
at the same points for all eight curves. For our case, these values are equal to 0.199912 and
0.894823, respectively. Again, the values of mo, CIO and Czo are all independent of M which
means that the magnitude of the discontinuities are the same for all curves. For the stress
these jumps are equal to - 1.04965 and 0.142584, respectively. The jumps in the temperature
are equal to 0.000928 and 0.135461, respectively. It is seen thus that the applied magnetic
field does not effect either the locations or the magnitudes of the discontinuities.

It is seen that the values of the stress or the temperature are identically zero for
x > tlbzo . Thus, the effect of the thermal shock does not reach infinity instantaneously but
remains in a bounded region that expands with the passage of time. The value x = tlbzo is
the location of the wave front. This is not the case when using the equations of coupled
thermoelasticity as in Paria (1967) where thermal effects are felt instantaneously at infinity
signifying infinite speeds of propagation for thermal waves.
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